Recall that we calculated the following limit using geometry in Calculus 1:

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1 .
$$

Definition An indeterminate form of the type $\frac{0}{0}$ is a limit of a quotient where both numerator and denominator approach 0 .

Example

$$
\lim _{x \rightarrow 0} \frac{e^{x}-1}{\sin x} \quad \lim _{x \rightarrow \infty} \frac{x^{-2}}{e^{-x}} \quad \lim _{x \rightarrow \frac{\pi}{2}} \frac{\cos x}{x-\frac{\pi}{2}}
$$

Definition An indeterminate form of the type $\frac{\infty}{\infty}$ is a limit of a quotient $\frac{f(x)}{g(x)}$ where $f(x) \rightarrow \infty$ or $-\infty$ and $g(x) \rightarrow \infty$ or $-\infty$.

Example

$$
\lim _{x \rightarrow \infty} \frac{x^{2}+2 x+1}{e^{x}} \quad \lim _{x \rightarrow 0^{+}} \frac{x^{-1}}{\ln x} .
$$

L'Hospital's Rule Suppose lim stands for any one of

$$
\lim _{x \rightarrow a} \lim _{x \rightarrow a^{+}} \quad \lim _{x \rightarrow a^{-}} \quad \lim _{x \rightarrow \infty} \quad \lim _{x \rightarrow-\infty}
$$

and $\frac{f(x)}{g(x)}$ is an indeterminate form of type $\frac{0}{0}$ or $\frac{\infty}{\infty}$.
If $\lim \frac{f^{\prime}(x)}{g^{\prime}(x)}$ is a finite number L or is $\pm \infty$, then

$$
\lim \frac{f(x)}{g(x)}=\lim \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

(Assuming that $f(x)$ and $g(x)$ are both differentiable in some open interval around a or ∞ (as appropriate) except possible at a, and that $g^{\prime}(x) \neq 0$ in that interval).

Definition $\lim f(x) g(x)$ is an indeterminate form of the type $0 \cdot \infty$ if

$$
\lim f(x)=0 \quad \text { and } \quad \lim g(x)= \pm \infty
$$

Example $\lim _{x \rightarrow \infty} x \tan (1 / x)$

We can convert the above indeterminate form to an indeterminate form of type $\frac{0}{0}$ by writing

$$
f(x) g(x)=\frac{f(x)}{1 / g(x)}
$$

or to an indeterminate form of the type $\frac{\infty}{\infty}$ by writing

$$
f(x) g(x)=\frac{g(x)}{1 / f(x)}
$$

We them apply L'Hospital's rule to the limit.

Indeterminate Forms of the type $0^{0}, \quad \infty^{0}, \quad 1^{\infty}$.

Type	Limit		
0^{0}	$\lim [f(x)]^{g(x)}$	$\lim f(x)=0$	$\lim g(x)=0$
∞^{0}	$\lim [f(x)]^{g(x)}$	$\lim f(x)=\infty$	$\lim g(x)=0$
1^{∞}	$\lim [f(x)]^{g(x)}$	$\lim f(x)=1$	$\lim g(x)=\infty$

Example $\lim _{x \rightarrow 0}\left(1+x^{2}\right)^{\frac{1}{x}}$.

Method

1. Look at $\lim \ln [f(x)]^{g(x)}=\lim g(x) \ln [f(x)]$.
2. Use L'Hospital to find $\lim g(x) \ln [f(x)]=\alpha$. (α might be finite or $\pm \infty$ here.)
3. Then $\lim f(x)^{g(x)}=\lim e^{\ln [f(x)]^{g(x)}}=e^{\alpha}$ since e^{x} is a continuous function. (where e^{∞} should be interpreted as ∞ and $e^{-\infty}$ should be interpreted as 0 .)

Indeterminate Forms of the type $\infty-\infty$ occur when we encounter a limit of the form $\lim (f(x)-g(x))$ where $\lim f(x)=\lim g(x)=\infty$ or $\lim f(x)=\lim g(x)=-\infty$
Example $\lim _{x \rightarrow 0^{+}} \frac{1}{x}-\frac{1}{\sin x}$

To deal with these limits, we try to convert to the previous indeterminate forms by adding fractions etc...

